80
Participants
Start Date
May 5, 2021
Primary Completion Date
December 31, 2025
Study Completion Date
December 31, 2025
Isometric contractions
HD-EMG grids will be applied to the lower limb muscles of interest. Isometric contractions will consist of applying joint torque to reach a pre-defined torque level based on the subject's maximal voluntary contraction (i.e., 25%, 60%, 70%, 80%, 90%). The participant will control torque intensity by responding to a biofeedback displayed on a screen. The joint will be secured with non-compliant bands to prevent any movement of the participant. The order of the joints tested (i.e., dominant ankle, knee, or hip joint) will be randomized.
Isokinetic contractions
HD-EMG grids will be applied to the lower limb muscles of interest. Isometric contractions will consist of moving a joint to completing a set of contractions (10-20 contractions) at various velocities (i.e., 10 degrees per second, 30 degrees per second, 60 degrees per second). The joint will be secured with non-compliant bands to prevent any movement of the participant. The order of the joints tested (i.e., dominant ankle, knee, or hip joint) will be randomized.
Dynamic contractions
HD-EMG grids will be applied to the lower limb muscles of interest. Multi-joint tasks (i.e. walking, squatting, cycling) will be performed at a given frequency. A motion capture system will be used to record the joint angles and ground reaction forces simultaneously.
Isometric contraction with muscle fatigue
"An identical experiment will be performed as stated in Isometric contraction with the addition of induced muscle fatigue by repeatedly maintaining 40% of muscle torque until failure to maintain a contraction for 5 seconds."
Multi-joint functional activities while wearing exoskeleton
Participants will be measured and fitted with the bilateral exoskeleton, and sufficient range of motion to used exoskeleton will be confirmed. HD-EMG grids will be applied to the lower limb muscles of interest. The participant will perform single-joint movements to calibrate the decoder parameters. The participant will then perform multi-joint activities (e.g., standing, squatting, walking overground or on a treadmill, cycling, or stair climbing) in a movement analysis laboratory
Clinical Assessments
Subjects may complete a 10 meter walk test (10MWT) overground or over a pressure-sensitive walkway, 6 minute walk test (6MWT), Berg Balance scale (BBS), and/or Functional Gait Assessment (FGA). They may also complete step ups or squats.
Shirley Ryan AbilityLab, Chicago
Shirley Ryan AbilityLab
OTHER